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Note 

Algorithms for Some Integrals of Bessel Functions 
and Multivariate Gaussian Integrals 

1. INTRODUCTION 

In this paper we shall devise a Miller formula for evaluating the integral 

K&(x) = i co K,(t) dt (x > Q (1) x 
and we shall devise a simple backwards recursion method for evaluating double 
integrals that have the canonical form 

I 

1 
a(r,s(x,y)=eY epYUa(r, xu) us-’ du, (2) 

0 

where 

.I 

I 
a(r, x) = ex eeX’trm ’ dt, (3) 

0 

with all arguments and parameters taken to be positive. The Bessel function integral 
has important applications in physics and is frequently tabulated. On the other hand, 
the double incomplete gamma integral has had its principal applications in statistics, 
but should be of interest to the scientific community. In our approach we draw most 
heavily upon our own two preceding papers [ 14, 151. 

2. INTEGRALS OF BESSEL FUNCTIONS 

Given the well-known Bessel function 

K,(x) = j” e -xcosh ’ cash VU du (x > 0) (4) 
0 

one is able to derive an expansion 

ex 
I 

mt-UK,(t)dt=n1~z2” f (-l)“(v+$J@+j+v,2~,2x), 
x ?I=0 
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where (a), = 1 and (a), = a@ t l)(a + 2) .*. (a-t-n-l) when n>l, and where 
U(a, 6, z) is the confluent hypergeometric function [ 1 ] with the integral representation 

r(a) U(u, b, z) = e’i: P’(t - l)‘-’ fb-‘-’ dt, (6) 

which is valid for z > 0 and a > 0. One derives (5) by using the relation K,.(x) = 
rr1’2(2~)“e-xU(~ + f, 2v + 1, 2x) along with integration under the integral sign. 

If one defines Ki,(x) = IF Ki,_ ,(t) dt for n > 1, K&(x) = K,(x), and Ki- ,(x) = 
(-1)” d”/dx” K,(x) for IZ > 1 then one is able to extend our method in deriving (5) to 
get an expansion for Ki,(x). Indeed if we define U(k) = U(k + 4, 1 - n, 2x) for 
k = 0, 1, 2,... then one has the expansions 

Ki,(x) = n”‘U(0) 1 t f (-l)‘( 
[ 

Wk($>k U(l) VI U(k) -- . . . k, 
UP) U(l) I U(k- 1) ’ (7) 

k=l 

<i>k<n + ilk u(1) ‘c2) U(k) -I -- . . . k, 
f-40) U(l) I U(k-1) * (8) 

Formulas of this type were termed Miller formulas in our preceding paper [ 151, 
where we also discussed the evaluation in detail. Our method entails the generation of 
successive quotients through the fractional linear transformations 

U(k) 4 
U(k- 1) = U(kt 1)’ 

(9) 
4(n t 2k + 2x) - (1 + 2k)( 1 + 2k + 2n) 

U(k) 

which generate a continued fraction. When formulas (7) and (8) are written in terms 
of nested operations these quotients are folded into the nesting very efficiently. In that 
manner one has only to specify the truncation index of the series, which is also taken 
as the starting index of (9). Empirically computed starting indices for Ki,(x), the 
most important case, are tabulated in Table I. 

In computer trials we were able to obtain accurate results for Ki,(x) (n > 1). We 
verified the data for Ki,(x) by comparing with the tabulations in [ 1, 3, 81 and we 
verified our data for higher-order functions by making recursive checks. There is no 
uncertainty to the reliability of (8) because all terms are positive and because the 
proposition in [15] implies that the continued fraction is stable. On the other hand, 
series (7) is monotone in absolute value by the estimates in [ 151 and thus incurs 
essentially no error due to cancellation. In case of Ki,(x) this may be inferred from 
Z(u) U(u, 6, x) > r(u t 1) U(u t 1, b, x). We tested our method for K&(x) in the 
intervals 1 < n < 100 and 1 <x < 200 with an appropriate starting index function. 

Approximate starting index. The function n(x) = [ 10 + 92/x] is a good approx- 
imation for the starting indices in Table I. In computer checks on the Burroughs 
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TABLE I” 

x e”Ki, (x) n(x) x e”Ki,(x) n(x) 

20.0 2.7212024643(-l) 11 3.0 
16.0 3.0215888406(-l) 12 2.5 
12.0 3.4506429758(-l) 14 2.0 

8.0 4,1388069462(-l) 18 1.8 
7.0 4.3871053502(-l) 20 1.6 
6.0 4.6869289171(-l) 24 1.4 
5.0 5.0593097082(-l) 24 1.2 
4.0 5,5399411680(-l) 30 1.1 
3.5 %8397138419(-l) 32 1.0 

6.1960339780(-l) 36 
6.6300151284(-l) 44 
7,1762950619(-l) 52 
7.4386972345(-l) 58 
7,7344800413(-l) 62 
8.0719042891(-l) 74 
8,4626097487(-l) 86 
8.6829966674(-l) 94 
8,9237516814(-l) 102 

’ Starting indices n(x) for computation to 11 significant digits. 

B7800, this index function yielded eXKi,(x) to eleven significant digits (machine 
precision) in single-precision arithmetic in the domain x > 1. Programs in ALGOL 
are available on request. Starting index functions for more or fewer significant digits 
are easily designed. In the region 0 < x < 1 our algorithm is slow, but here the usual 
series expansion is accurate. 

Iterated integrals. In order to generate higher-order integrals one can make use of 
the recursive formula 

nK~,+,(x)=x(Ki,~,(x)-KKi,(x))+(n- l)Ki,-i(X), (10) 

which is proved in Bickley and Nayler [3] and Blair et al. [4], with an application in 
[2]. It suffices to have available high-precision values Ki,(x), K&(x) = K,(x), and 
Ki- i(x) = K,(x) to generate higher integrals, but this recursion does become unstable 
for large x. Fortunately, our algorithm for Ki,(x) also contains sufficient data for 
constructing K,(x) and K,(x) with no additional effort, as may be seen from the 
formulas 

eXK,(x) = 7r11*(2x)-1 U(O)(f + 2x - tU(l)/U(O)), 

eXKl(x) = n1’2(2x-’ U(O)($ + 2x - iU(l)/U(O)), 
(11) 

where U(k) = U(k + f, 0,2x). Other high-precision algorithms for K,(x) and K,(x) 
are discussed by Temme [ 131 and Terras [ 151. Our suggested approach is much more 
accurate than the usual series method [1,3]. Moreover, our algorithm for E,(x) is 
reasonably rapid when x > 1, and our ALGOL code is very short. In the event that 
the repeated integrals of low order need to accessed frequently, we recommend use of 
the rational approximations in [4], which have the advantage of speed. 
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Additional formulas of interest are 

b>k eIKi,(x) = TC”’ 2-” 2 2-k F U(i, 1 - n - k, 2x), (12) 
k=O 

-cc 
ex 

I 
t-‘i,(t) dt = rt112 2”-’ q 2-kU(v + 4, 2v - k, 2x), (13) 

. x kt0 

which converge approximately as Ck>O 2-k. Because our most general Miller formula 
for U(a, b, X) is always stable when b < a + 1 and x > 1, we were able to experiment 
with (12), in addition to our Miller formulas, in computing Ki,(x) for large 
parameters n. 

In the evaluation we made use of the upward recursion 

(n + 1 + a) U(a, -n - 1, x) 

= (n + 1) I!& -n, x) + x(U(a, 1 L n, x) - U(a, -n, x)), 

which is stable when x is not too much larger than n. In this manner we obtained 
satisfactory results for Ki,(x) (1 < x < n) with n large. 

3. INTEGRALS OF INCOMPLETE GAMMA FUNCTIONS 

For the functions a(s,r) and a(r, s 1 x, y) one has the recursive relations 

4&Y) = (1 +ya(s + LY))/& 

a@, s I x, y) = (ar(s,y> t xa(r t 1, s t 1 1 x, y))/r. 

These recursions generate the series 

a(s,v)=$+ Y .Y2 
s(st 1) +s(st l)(s+2)+“” 

a(~, s ) x, y) = +- a(s, y) + x 
r(r + 1) 

4s + 1,~) 

X2 

+r(rt l)(r+2) 
a(st2,y)+ ..+ . 

(14) 

(15) 

(16) 

(17) 

One may also obtain (17) from (2) through substitution of the series for a(r, xu), 
Formula (17) yields the easily computed double series 

m n 

... (r + m)(s t ,X)i + m + 1) e.. (s t m + n) (18) 
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but there is a much more efftcient way to sum (17). One uses nested operations to 
write 

+(&Y) + 
X n 

r(r+ 1) 
a(s t 1,y) + '*- t 

r(r + 1)X.. (r t n) a(s + n9y) 

=+ 
( 
cf(&Y> t-& 

( 
a(s + LY) 

tt x . . . 
rtn-1 ( 

a(stn- l,y)t-&a(stn,y) 
) 1) 

*** . 

(19) 

In our preceding paper [ 141 we analyzed in detail the backward recursion (14). We 
discovered that the situation is quite analogous to the continued fraction recursion 
(9). If one starts out with the arbitrary assignement a(s t n t 1,~) = 0, then the 
successive iterates a(s t n, y), a(s t n - 1, y),..., a(s, y) are increasingly more 
accurate approximations to the correct values of the integrals. We gave a relative 
error estimate for the accuracy of the approximation and tabulated the necessary 
starting indices for some parameters. The algebra of the computation of the nesting 
yields 

a(s t 112, y) = (1 t va(s t m t 1, y))/(s + m), WV 

a(rtm,stm~x,y)=(a(stm,y)+xa(r+mt1,stm+1~x,y))/(rtm) (21) 

for m = n, n - l,..., 1. These equations are just versions of (14) and (15) and thus we 
have shown that simultaneous backwards recursion with (14) and (15) will compute 
a(r, s 1 x, y). The starting index is easily determined from 

i 
m 

r(rt 1)X. (rtm) 4s t m, Y) = 41, s I x9 YN - e,(x,Y)), (22) 
I?l=O 

where 

nt1 
e,(xY Y) = r(r t I;... (r t n) 

a(rtn+l,stn+lIx,y) 

a(r,slx,y) . 

It is useful to note that a(r, s 1 x, v) Q a(r, x) a(s, JJ) is a close estimate when r > x and 
s >y. 

Applications. Our integrals have been analyzed in well-known special cases. One 
has the double integral of Rosser [ 1 l] 

G(~,p)=~~e~~~~~dy~~e~~*dx. 
0 0 

(23) 
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Reduction to our canonical form yields 

W,p) = G exp(-(p’ + 1) z2) a _f_ 1]z2,(p2+ l)z* ( 2 , 
) 

. 

Rosser develops a formula which is essentially equivalent to (17), but use of the 
backwards recursion is not considered. The formula also extends to complex p and z, 
but will suffer from cancellation error when z2 or (p’ + 1) z2 is large in magnitude 
and does not lie close to the real positive axis. 

In addition to the above, Zelen and Sever0 reporting in [l] consider the closely 
related probabilistic integral of a Gaussian density in the plane over the triangle 
{(x,y)IO<y<ax,O<x<h} given by 

V(h, ah) = (2X))’ Jo* dx 1:X dy exp (- ( y) ) . (25) 

After reduction to our canonical form one has 

Y(h,~h)=~exp(-(h’(1~u2)))a(~,l~fo2/z2,f~2(l+o2)). (26) 

In [l] the formulas for computing V(h, ah) are quite different from our own and 
depend on another integral which is evaluated in terms of repeated derivatives of the 
one-dimensional Gaussian density. One has the relation q&P, d2z) = 
(p/n) G(z,p) when p > 0 and z > 0. Yet another quite efficient way to evaluate 
V(h, ah) is developed in Nicholson [9] and Owen [IO]. 

For repeated evaluation we note the Taylor expansions 

a(r, s I x + h, y + h) = eh 2 a(r + n, s + n 1 x,y) h”/n!, 
n=O 

cf(r,s(x,y+h)=e’ 5 a(r,s+nlx,y)h”/n! 
n=O 

(27) 

and note the recursion (s - T) a(r, s 1 x, y) = (y - x) a(r, s + 1 1 X, y) + a(r, x) - 
a(s, y), which is downward stable when s > r and y > x. 

A multidimensional integral. The two-dimensional integral (2) has several 
possible generalizations. We shall mention one. If one defines 

a@,, s2,..., s, / x,, x2,..., x,) 
(28) 

= tin 
!’ 

’ eCxn’W ‘a(s, , s2 ,..., s,- 1 j x, t, x2 t ,..., x, -, t) dt 
0 
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inductively for n > 2 and for positive arguments and parameters, then one can obtain 
the recursive relation 
s, a(s1 , s2 ,..., s, 1 x, , x2 ,..., x,) 

= a(sz, Sjr***, S”I-%,..., XJ + x,a(s, + 1, s2 + l,..., s, + 1 1 x1 ,..., xn). (29) 

It is easy to see that the function a(~,, s2 ,..., s, ( x1, x2 ,..., x,J can be computed 
through simultaneous backwards recursion in a manner which generalizes (20) and 
(21). This function also has a multidimensional series analogous to (18). Brute force 
summation of this series to a given accuracy requires on the order of O(P) 
operations, whereas the backwards recursion method requires O(Nn) operations, 
which grows only linearly with dimension. We note that in Schavitt [ 121 use of the 
series for a(s, x) led to the solution of other multidimensional integral problems. 

We can relate some iterated integrals of the one-dimensional Gaussian density to 
our integrals (28). Let Z(t) = (2~)~“~ exp(-t2/2). Define L,(x) = Z(x) and define 

L,(x) = (” L,-,(t) dt (n 2 1). (30) 

One has 

L,(x) = (2/n)-” Z(x) a 
( 
+, 1,...,; 1 +x2,+x2 )...) +x2) ) (31) 

when it > 1. If n > 0 then one has the recursive relation 

(n + 1) L”+2(X) = L,(x) + XL,, I(x) - (271)~1’2x”/n!. (32) 

We checked our formula for V(h, ah) by using simultaneous backwards recursion 
with a(r, s 1 x, y) on a programmable calculator and found agreement with the 
tabulations of Nicholson [9]. 
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